Name:	

1.6 – Writing Proofs with Angles & Segments Notes

Many rules from algebra are used in geometry.

Properties of Equality (true for all real numbers a, b, and c) Reflexive Property If a = b, then b = a. Symmetric Property If a = b and b = c, then a = c. Transitive Property If a = b, then a + c = b + c. Addition Property If a = b, then a - c = b - c. Subtraction Property If a = b, then $a \cdot c = b \cdot c$. Multiplication Property If a = b and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$. Division Property If a = b, then a may be replaced by b in any Substitution Property equation or expression. Distributive Property a(b+c) = ab + ac.

Important Properties for Proofs			
Addition Property	Reflexive Property	Substitution Property	
Subtraction Property	Symmetric Property	Combining Like Terms	
Multiplication Property	Transitive Property	Simplification	
Division Property	Distributive Property	All right angles ≅	
Angle Addition Postulate Vertical Angles are ≅ Segment Addition Postulate			
"Definition of" (Bisector, Midpoint, Complementary, Supplementary, etc.)			

This list will grow as we continue through Geometry this year.

Example 1

Example 2

Directions: Complete the following proofs.

Given: _100 = (4x = 2) = -94 Prove: x = -1

Statement Reason

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Remember, the first statement will always be the given while the last statement should always be what you need to prove.

Statement Reason

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Example 3

$ \begin{array}{c} & 1 \\ & 2 \\ & 4 \\ & 3 \end{array} $	Statement	Reason	
6/5	1.	1.	
8 \7	2.	2.	
,	3.	3.	
Given: 42 ≅ 45 Prove: 44 ≅ 48	4.	4.	
Prove: 44 ≅ 48	5.	5.	

Given: DF = EG Prove: DE = FG

D E F G

Statements Reasons

Example 4

Now, summarize your notes here!

SKILLZ REVIEW

Solve each	equation for x!	Multiply!	Factor!
1. 12x − 3 = −3	2. 5x + −2 = 3x − 4	3. 2x(2x - 1)	4. 3x² – 12x
5. Graph the equation: $y = 4 - x$	5 4 3 2 1 1 2 3 4 5 2- 3- 4- 3- 4- 3-	6. Graph the equation: $x = -3$	5 4 3 2 1 1 2 3 4 5

1.5 Problems

Directions: Complete the following proofs.

	Given: _{10x +} 42 = 20 - x	Prove: x = -2
	Statement	Reason
#3	1.	1.
	2.	2.
Proof	3.	3.
1	4.	4.

	Given: 1 - x = 11	Prove: x = -10	
#2	Statement 1.	Reason 1.	
,00	2.	2.	
Ą	3.	3.	

	Given: $6x - (4x - 1) = 2$	Prove: x = 1/2
	Statement	Reason
	1.	1.
	2.	2.
	3.	3.
3	4.	4.
	5.	5.

Given: 41 ≅ 43 Prove: 44 ≅ 46

1.	1.
2.	2.
3.	3.
ч.	ч.
5.	5.
6.	6.

Given: 41 ≅ 46 Prove: 43 ≅ 47

Statement

Reason

1.	1.
2.	2.
3.	<i>3</i> .
4.	4.
5.	5.

41 and 42 are supplementary 42 and 43 are supplementary 41 ≅ 43 Given:

Prove:

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

Given: M is the midpoint of \overline{AB} .

B is the midpoint of \overline{MD} .

Prove: MD = 2MB

Statement

Reason

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.