[11,1: SIMPLIFYING RADICALS]

Let's do some quick review:

Radicals? Square Roots?

Simplifying Square Roots:

Product Property of Radicals:

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

To simplify, we will use the _____ with our trusty Perfect-Squares number line:

Step 2: Start at the number given in the problem. each perfect square on the top of the number line until you find a _____ of the given number. Write that number first under a radical.

Step 3: Write second under a radical.

Step 4: Simplify written. (Because it is a perfect sqaure... it will **ALWAYS** simplify to a whole number!)

Examples Simplify the following radical expressions:

$$1. \sqrt{12}$$

$$\sqrt{12}$$
 2. $\sqrt{98}$ 3.

з.
$$\sqrt{200}$$

[11.1: SIMPLIFYING RADICALS]

$$4. -4\sqrt{300}$$

$$5. \quad 2\sqrt{18}$$

$$5. \quad 2\sqrt{18}$$
 6. $10\sqrt{108}$

$$7. \sqrt{33}$$

8.
$$-\sqrt{1000}$$
 9. $-\sqrt{26}$

$$-\sqrt{26}$$

Now, summarize your notes here!

Quick Review: Solve the quadratic equations using the given method.

1. Solve by factoring:

$$\chi^2 - 3\chi = -2$$

2. Solve by double factoring:

$$4x^2 - 4 = 0$$

3. Solve by double factoring::

$$2x^2 - 18x + 40 = 0$$

Simplify.

1)
$$-6\sqrt{100}$$

2)
$$6\sqrt{32}$$

3)
$$-5\sqrt{125}$$

4)
$$-2\sqrt{150}$$

5)
$$-4\sqrt{36}$$

6)
$$5\sqrt{54}$$

7)
$$-2\sqrt{20}$$

8)
$$4\sqrt{32}$$

9)
$$-\sqrt{216}$$

10)
$$-\sqrt{30}$$

11)
$$6\sqrt{125}$$

12)
$$-5\sqrt{144}$$

13)
$$2\sqrt{180}$$

14)
$$4\sqrt{18}$$

15)
$$3\sqrt{8}$$

16)
$$5\sqrt{64}$$

17)
$$5\sqrt{32}$$

18)
$$-2\sqrt{12}$$

19)
$$-4\sqrt{216}$$

20)
$$-6\sqrt{30}$$

Application and Extension

Simplify the following radicals:

$$\sqrt{48}$$

- 2. $8\sqrt{72}$
- 3. The perimeter of a square is given by the function $P=4\sqrt{a}$. Find the perimeter of a square that has an area that measures 225 m².
 - 4. The time, t, in seconds it takes an object to free-fall a distance, d, is given by the function $t = \frac{1}{4}\sqrt{d}$. (This assumes no air resistance, of course!) Find the amount of time it would take a 25lb bowling ball to fall a distance of 16.
 - 5. Let's do some awesome graphing! Let $f(x) = \sqrt{x}$.

Fill in the table of values and graph the points

X	\sqrt{x}
0	
4	
9	
16	
25	
49	
64	

What is the domain (x-values) of this graph?

What is the range (y-values)?