3.2 NOTES: Triangle Types & Properties

Classifying Triangles (by Angles)

Classification (and ways to remember)		DESCRIPTION	PICTURE
	ACUTE		
by ANGLES	RIGHT		
by A	OBTUSE		
	equangul ar		

Classifying Triangles (by Sides)

Classification (and ways		DESCRIPTION	PICTURE
to remember)			
	SCALENE	congruent sides	
by SIDES	ISOCELES	At least congruent sides	
	EQUILATERAL	congruent sides	***

Can an isosceles triangle be equilateral? Can an equilateral triangle be isosceles?

Comparing Measurements of a $\boldsymbol{\Delta}$

- The longest side and largest angle of a Δ are opposite each other.
- The shortest side and smallest angle of a Δ are opposite each other.

If two sides of a triangle are congruent, then the angles opposite them are also congruent.

What else do we know to be true? Mark the parts that are congruent in the picture below.

Equilateral triangles are _____

Example #2: Find the angle measures of equilateral ΔPHS .

Example #3: Find the value of *x* in the figure below.

Example #4: Find the values of *x* and *y* in the diagram.

Example #6: Find the perimeter for each of the following.

Example #7: Find the values of x and y.

Summarize your notes:

Practice Problems

Draw the following. Mark the picture:::					
 Obtuse Isosceles Triangle 	Acute Equilateral Triangle	Right Scalene Triangle			

- 1. If $\triangle AOD$ is isosceles, with $\overline{OA} \cong \overline{OD}$, then \angle ? \cong \angle ?
- 2. If $\triangle BOC$ is isosceles, with $\overline{OB} \cong \overline{OC}$, then \angle ? \cong \angle ?
- 3. If $\triangle AOD$ is an isosceles right triangle with right $\angle AOD$, then the measure of $\angle A$ is $\frac{?}{}$.

4. Given the triangles at the right, which of the following can you conclude are true?

a.
$$\angle D \cong \angle R$$

b.
$$\overline{DE} \cong \overline{DF}$$

c.
$$\overline{DF} \cong \overline{RT}$$

d.
$$\angle E \cong \angle F$$

e.
$$\angle E \cong \angle S$$

f.
$$\angle S \cong \angle T$$

Given the two congruent angles, name two segments that must be congruent.

8. Is the statement " $\overline{MK} \cong \overline{NK}$ if and only if $\angle 3 \cong \angle 4$ "/true or false?

Solve for x. 9. 10. 10. 70° 70°

12. Find the measures of $\angle 1$, $\angle 2$, $\angle 3$, $\angle 5$, and $\angle 6$, if $\angle 4 = 110^{\circ}$

Exercises

The value of x.

1.

2.

5.

6.

For each exercise place the statements in the appropriate order for a proof. (There may be more than one correct order.)

9. Given: M is the midpoint of \overline{JK} ;

 $\angle 1 \cong \angle 2$ Prove: $\overline{JG} \cong \overline{MK}$ R

10. Given: $\overline{BD} \parallel \overline{CE}; \angle 5 \cong \angle 6$

Prove: $\overline{AC} \cong \overline{AE}$

11.

Given: M is the midpoint of \overline{JK} ;

$$\angle 1 \cong \angle 2$$

Prove: $\overline{MG} \cong \overline{MK}$

R

14. Given: $\overline{XY} \cong \overline{XZ}$

Prove:
$$\angle 3 \cong \angle 5$$

15. Given: $\overline{PQ} \cong \overline{PR}$; $\overline{TR} \cong \overline{TS}$

Which one(s) of the following must be true?

(1)
$$\overline{ST} \parallel \overline{QP}$$
 (2) $\overline{ST} \cong \overline{QP}$ (3) $\angle T \cong \angle P$

16. Given: $\angle S \cong \angle T$; $\overline{ST} \parallel \overline{QP}$

Which one(s) of the following must be true?

- $(1) \ \angle P \cong \angle Q \quad (2) \ PR = QR$
- (3) R is the midpoint of \overline{PT} .

Write proofs in two-column form.

17. Given:
$$\overline{XY} \cong \overline{XZ}$$
; $\overline{OY} \cong \overline{OZ}$

Prove: $m \angle 1 = m \angle 4$

18.

22. Given: $\overline{PO} \cong \overline{QO}$; $\overline{RO} \cong \overline{SO}$

a. If you are also given that $m \angle 1 = 40$, find the measures of $\angle 2$, $\angle 7$, $\angle 5$, and $\angle 6$. Then decide whether \overline{PQ} must be parallel to \overline{SR} .

b. Repeat part (a), but use $m \angle 1 = k$.

- 23. Complete.
 - a. If $m \angle 1 = 20$, then $m \angle 3 = \frac{?}{?}$, $m \angle 4 = \frac{?}{?}$, and $m \angle 5 = \frac{?}{?}$.

b. If $m \angle 1 = x$, then $m \angle 3 = \frac{?}{?}$, $m \angle 4 = \frac{?}{?}$, and $m \angle 5 = \frac{?}{?}$.

- **24.** a. If $m \angle 1 = 35$, find $m \angle ABC$.
- **25.** a. If $m \angle 1 = 23$, find $m \angle 7$.

b. If $m \angle 1 = k$, find $m \angle ABC$.

b. If $m \angle 1 = k$, find $m \angle 7$.

Find the values of x and y. (Hint: Systems of Equations)

26. In equiangular $\triangle ABC$, AB = 4x - y, BC = 2x + 3y, and AC = 7.

Picture

27. In equilateral $\triangle DEF$, $m \angle D = x + y$ and $m \angle E = 2x - y$.

28. In $\triangle JKL$, $\overline{JK} \cong \overline{KL}$, $m \angle J = 2x - y$, $m \angle K = 2x + 2y$, and $m \angle L = x + 2y$.

29.

