Name:	Class:
	Glassi

5.2 Triangle Proofs

Muite your

Given: H is the midpoint of \overline{GT}

 $\overline{HR} \cong \overline{IH}$

Prove: $\triangle GHI \cong \triangle THR$

WHY ARE THE TWO TRIANGLES CONGRUENT?

STATEMENTS	REASONS
1. $\overline{HR} \cong \overline{IH}$ H is the midpoint of \overline{GT}	1.
2.	2.
3.	3. M:
4.	4. Tuppeomain.co

Given: $\triangle ACB$ is an isosceles triangle with base \overline{AB} \overline{CP} is an angle bisector of $\angle ACB$

Prove: $\triangle ACP \cong \triangle BCP$

WHY ARE THE TWO TRIANGLES CONGRUENT?

STATEMENTS	REASONS
 ΔACB is an isosceles triangle CP is an angle bisector of ∠ACB 	1.
2.	2.
3.	3.
4.	4. Hispedmathe
5.	5.

Given: $\angle HYP$ and $\angle LEG$ are right angles

 $\overline{HY} \cong \overline{EL}$ $\overline{HP} \cong \overline{LG}$

Prove: $\triangle HYP \cong \triangle LEG$

WHY ARE THE TWO TRIANGLES CONGRUENT?

STATEMENTS	REASONS
1. $\angle HYP$ and $\angle LEG$ are right angles $ \frac{\overline{HY}}{\overline{HP}} \cong \overline{EL} $ $ \overline{HP} \cong \overline{LG} $	1
2.	2.
3.	3.

Given: $\angle X \cong \angle I$ $\overline{XJ} \parallel \overline{IH}$

Prove: $\triangle JHI \cong \triangle HJX$

WHY ARE THE TWO TRIANGLES CONGRUENT?

STATEMENTS	REASONS
1. $\overline{XJ} \parallel \overline{IH}$ $\angle X \cong \angle I$	1.
2.	2.
3.	3.
4.	4. M. H.

Given: $\overline{AC} \cong \overline{BC}$

 \overline{CP} is perpendicular to \overline{AB}

Prove: $\triangle ACP \cong \triangle BCP$

WHY ARE THE TWO TRIANGLES CONGRUENT?_

STATEMENTS	REASONS
1. $\overline{AC} \cong \overline{BC}$ \overline{CP} is perpendicular to \overline{AB}	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

4.4 CPCTC and HL

Corresponding Parts of Congruent Triangles are Congruent

Given: $\overline{XJ} \cong \overline{HI}$

 $\overline{XJ} \parallel \overline{IH}$

Prove: $\overline{XH} \cong \overline{JI}$

WHY ARE THE TWO TRIANGLES CONGRUENT?____

STATEMENTS	REASONS
1. $\overline{XJ} \parallel \overline{IH}$ $\overline{XJ} \cong \overline{HI}$	1.
2.	2.
3.	3.
4.	4.
5.	5. Tuppedmati

Now, summarize your notes here!

Summarize your notes:

5.2 Practice Problems

Given: $\angle XUY \cong \angle VUW$; $\overline{UW} \cong \overline{UY}$; $\angle VWU \cong \angle XYU$

Prove: ▲ UVW ≅▲ UXY

2)

Given: \overline{BD} bisects $\angle ADC$; $\angle DAB \cong \angle DCB$

Prove: $\angle ABD \cong \angle CBD$

3)

Given: $\overline{SR} \perp \overline{ST}$, $\overline{RU} \perp \overline{UT}$, $\overline{RS} \cong \overline{RU}$

Prove: $\overline{UT} \cong \overline{ST}$

4)

Given: Circle P and Circle Q intersect at A and B.

Prove: $\angle APQ \cong \angle BPQ$

5)

Given: N is the midpoint of \overline{OE} , *I* is parallel to m.

Prove: $\overline{UN} \cong \overline{AN}$

6)

Given: $\angle ABC \cong \angle DCB; \angle BAC \cong \angle CDB$

Prove: $\angle BCA \cong \angle CBD$

7)

Given: $\angle DAC \cong \angle CBD$; $\angle ACD \cong \angle BDC$

Prove: $\overline{AD} \cong \overline{BC}$

8)

Given: VWXYZ is a regular pentagon

Prove: $\overline{XV} \cong \overline{WY}$

Given: C is the midpoint of \overline{BE} $\angle BAC \cong \angle EDC$

Prove: $\angle ABC \cong \angle DEC$

10)

Given: $\overline{AN}//\overline{GL}$

 $\overline{\textit{AN}} \cong \overline{\textit{GL}}$

Prove: $\angle NAL \cong \angle LGN$

11) _A

В

Given: $\overline{AD} \perp \overline{DC}$; $\overline{BC} \perp \overline{CD}$; $\overline{AD} \cong \overline{BC}$

Prove:
$$\overline{AC} \cong \overline{BD}$$

12)

Given: E is the midpoint of \overline{BD} \overline{AC}

Prove: $\overline{AB} \cong \overline{CD}$