### 7.4 Setting Up for Coordinate Geometry Proofs

$\qquad$

Write your questions here!

Before we dive right into completing coordinate proofs, I want to illustrate the need to make convenient choices for our vertices on the coordinate plane.

Let's look at an example proof worked out for you.
Prove: The midpoint of the hypotenuse of a right triangle is equidistant from the three vertices.


## Organizing Coordinate Proofs

## Notice that

these locations
for the axes maximize the number of times zero is a coordinate vertex.

If you have a right triangle, the most convenient place to put the $x$-axis and the $y$-axis is usually along the legs of the triangle (like in the example above). If the triangle is not a right triangle, the two most convenient ways to place your axes are shown below.



Find the missing coordinates of each triangle.
3.


Some common ways of placing coordinate axes on other special figures are shown below.


Summary/Comments/Notes: $\qquad$
$\qquad$
$\qquad$

Supply the missing coordinates without introducing any new letters.

1. $P O S T$ is a square.

2. $\triangle M O N$ is isosceles.
3. JOKL is a trapezoid.


4. $G E O M$ is a parallelogram.
5. $G O L D$ is a rectangle.
6. Rt. $\triangle T O P$ is isosceles.




| 7. Rectangle | 8. Parallelogram | 9. Square |
| :---: | :---: | :---: |
|  |  |  |
| 10. Isosceles Triangle | 11. Parallelogram | 12. Isosceles Trapezoid |
| 13. Equilateral Trianngle | 14. Rhombus | 15. Rhombus |

Given that $\triangle A O B \sim \triangle C O D$, find the missing coordinates and the scale factor.
16.

17.

18. Given that $\triangle A E B \sim \triangle C E D$, find the coordinates of $C$ and the scale factor.

19. Given that $\triangle L K M \sim \triangle N K P$, find the coordinates of $P$ and the scale factor.


## SKILLZ REVIEW

Multiple Choice
If point $M$ has a nonzero $x$-coordinate and a nonzero $y$-coordinate and the coordinates have opposite signs, then point $M$ must be located in which of the 4 quadrants labeled below?

A. I only
B. III only
C. I or III only
D. I or IV only
E. II or IV only

Answer questions a-d, using the picture below:


Line $l$ is tangent to $\odot O$ at point $P(3,4)$
a. Find the radius of the circle.
b. Give an equation of the circle.
c. Find the slope of line $l$.
d. Give an equation of line $l$.

## State the slope of the line and name two points on the line

$$
y=-(x+7)
$$

$$
y+2=\frac{1}{2}(x-5)
$$

### 7.4 Applications

1. Supply the missing coordinates to prove:

The segments that join the midpoints of opposite sides of any quadrilateral bisect each other.
Let $H, E, A$, and $R$ be midpoints of the sides of the quadrilateral SOMK. Choose axes and coordinates as shown.
a. $R$ has coordinates (? ? ? ).
b. $E$ has coordinates (? ? ? ).
c. The midpoint of $\overline{R E}$ has coordinates $(?, ?)$ ?
d. $A$ has coordinates $(?, ?)$ ?
e. $H$ has coordinates $(?, ?)$ ?
f. The midpoint of $\overline{A H}$ has coordinates (? ? ? ).
g. Because ( ? ? ? ) is the midpoint of both $\overline{R E}$ and $\overline{A H}, \overline{R E}$ and $\overline{A H}$ bisect each other.


Draw the figure named. Select axes and label the coordinates of the vertices in terms of a single letter.
2. A regular hexagon
3. A regular octagon
4. PROOF:

Given isosceles trapezoid HOJK and the axes and coordinates shown, use the definition of an isosceles trapezoid to prove that $e=c$ and $d=a-b$.


## 5. PROOF:

Given points $A(1,1), B(13,9)$, and $C(3,7) . D$ is the midpoint of $\overline{A B}$, and $E$ is the midpoint of $\overline{A C}$.
a. Find the coordinates of $D$ and $E$.
b. Use slopes to show that $\overline{D E} \| \overline{B C}$.
c. Use the distance formula to show that $D E=\frac{1}{2} B C$.
6. PROOF:
a. Find the coordinates of the midpoints $J, K, L$, and $M$.
b. What kind of figure is $J K L M$ ? Prove it.


