7.4 Setting Up for Coordinate Geometry Proofs

Name:

Before we dive right into completing coordinate proofs, I want to illustrate the need to make convenient choices for our vertices on the coordinate plane.

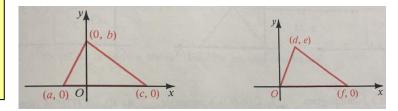
Let's look at an example proof worked out for you.

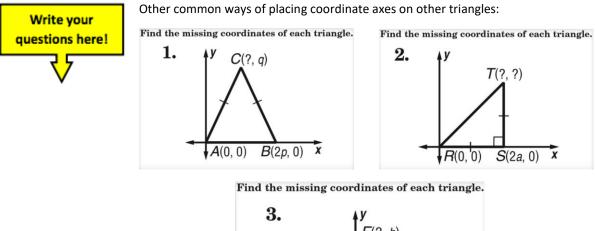
Prove: The midpoint of the hypotenuse of a right triangle is equidistant from the three vertices.

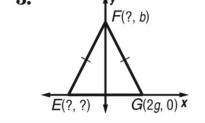
	Statements	Picture	Reasons
	1) ΔROP is a right triangle2)M is the Midpoint of \overline{RP} 3) $\overline{}$		 Given Given Definition of Midpoint
Notice that 2a and 2b are convenient choices for coordinates	4) Let \overrightarrow{OP} and \overrightarrow{OR} be the x-axis and y-axis. Let P and R have the coordinates shown.	<i>y</i> <i>R</i> (0, 2 <i>b</i>) <i>M</i> (<i>P</i> (2 <i>a</i> , 0) <i>x</i>	Let statements don't need reasons.
since they lead to expressions that do not contain fractions for the coordinate	5) The coordinate of M are (a, b)	<i>y</i> <i>R</i> (0, 2 <i>b</i>) <i>M</i> (<i>a</i> , <i>b</i>) <i>P</i> (2 <i>a</i> , 0) <i>x</i>	5. By using the midpoint formula. $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $M = \left(\frac{+}{2}, \frac{+}{2}\right)$ $M = \left(\frac{-}{2}, \frac{-}{2}\right)$ $M = (a, b)$
of M.	6) $\overline{MO} = \sqrt{()^2 + ()^2}$ $\overline{MP} = \sqrt{()^2 + ()^2}$		6. By using the distance formula. $d = \sqrt{\left(\frac{x_2 - x_1}{2}\right)^2 + \left(\frac{y_2 - y_1}{2}\right)^2}$
	 7) MO = MP 8) MO = MP = MR 9) Thus, the midpoint of the hypotenuse of a right triangle is equidistant from the three vertices. 		 7 8. Transitive Property 9. Definition of Equidistant

Organizing Coordinate Proofs

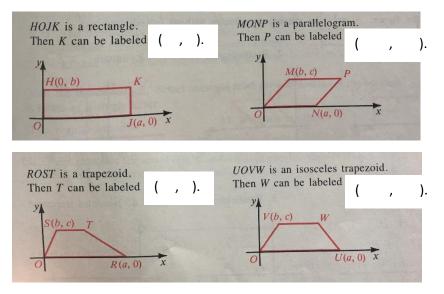
Notice that these locations for the axes maximize the number of times zero is a coordinate vertex. If you have a right triangle, the most convenient place to put the x-axis and the y-axis is usually along the legs of the triangle (like in the example above). If the triangle is not a right triangle, the two most convenient ways to place your axes are shown below.







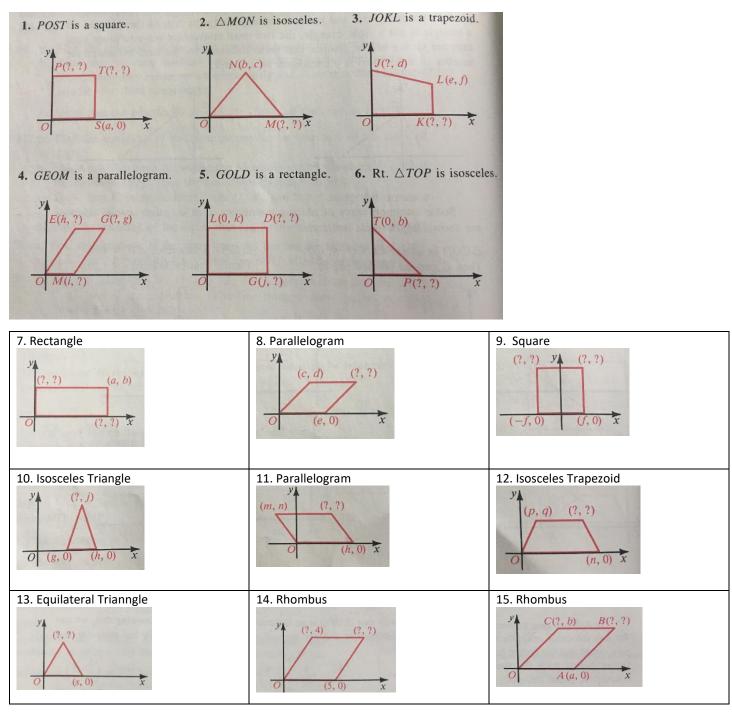
Some common ways of placing coordinate axes on other special figures are shown below.



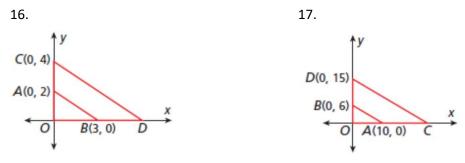
Summary/Comments/Notes: _

7.3 Problem Set

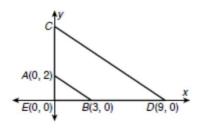
Supply the missing coordinates without introducing any new letters.



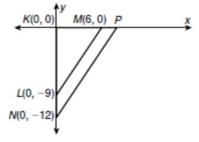
Given that $\Delta AOB \sim \Delta COD$, find the missing coordinates and the scale factor.

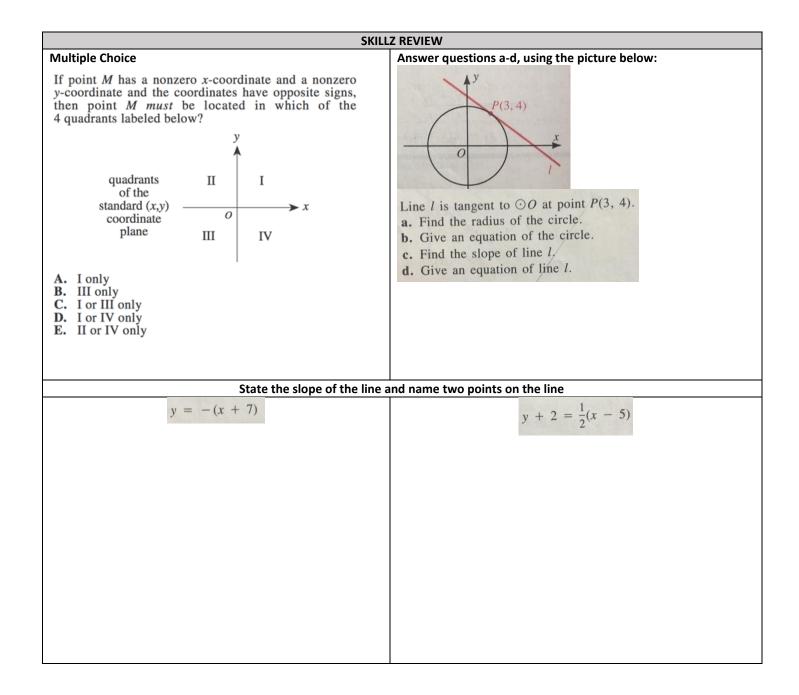


18.Given that $\triangle AEB \sim \triangle CED$, find the coordinates of C and the scale factor.



19. Given that $\triangle LKM \sim \triangle NKP$, find the coordinates of *P* and the scale factor.



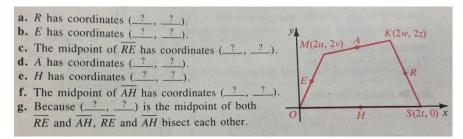


7.4 Applications

1. Supply the missing coordinates to prove:

The segments that join the midpoints of opposite sides of any quadrilateral bisect each other.

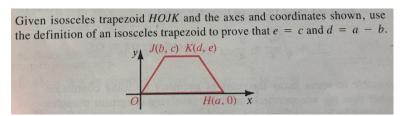
Let H, E, A, and R be midpoints of the sides of the quadrilateral SOMK. Choose axes and coordinates as shown.



Draw the figure named. Select axes and label the coordinates of the vertices in terms of a single letter.

2. A regular hexagon 3. A regular octagon

4. PROOF:



5. PROOF:

Given points A(1, 1), B(13, 9), and C(3, 7). D is the midpoint of \overline{AB} , and E is the midpoint of \overline{AC} . **a.** Find the coordinates of D and E. **b.** Use slopes to show that $\overline{DE} \parallel \overline{BC}$.

c. Use the distance formula to show that $DE = \frac{1}{2}BC$.

6. PROOF:

- a. Find the coordinates of the midpoints J, K, L, and M.
- b. What kind of figure is JKLM? Prove it.

