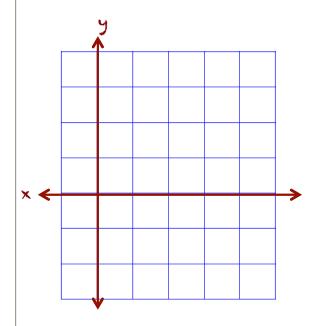

For help on graphing inequalities, see
Unit 4 Section 5!

A system of linear inequalities in two variables, or simply a system of linear inequalities, consists of two or more linear inequalities in the same variables. For example:

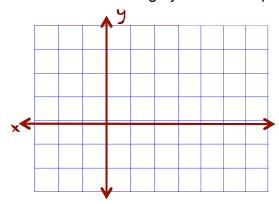
The solution of a system of inequalities is an ordered pair that is a solution of each inequality in the system.


Is (3, -5) a solution to the system of inequalities above? How about (5, -2)?

Remember this?:

Example 2:

Solve the following system of inequalities by graphing:



$$3x + 2y \le 6$$

 $x < 2$

2 | PACKET 8.5: SOLVING SYSTEMS OF INEQUALITIES

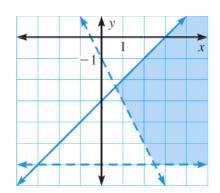
Example 3:

Solve the following system of inequalities by graphing:

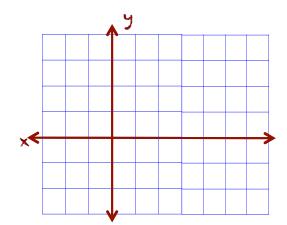
$$y \ge -1$$

$$x > -2$$

$$x + 2y \le 4$$

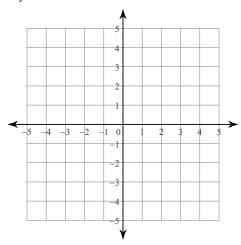

Example 4:

Is (0, -1) a solution to the following system of inequalities?

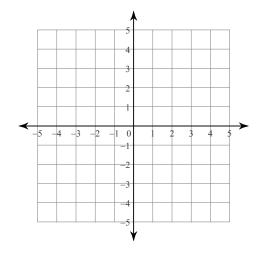

What about (2, -2)?

What about (2, -5)?

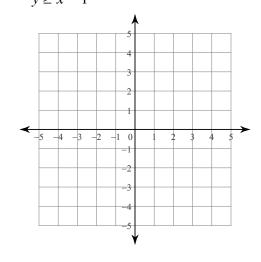
What about (3, 0)?


Example 5:

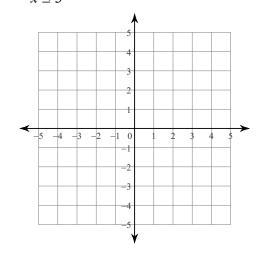
8.5 Practice... Use a ruler! Shade beautifully!

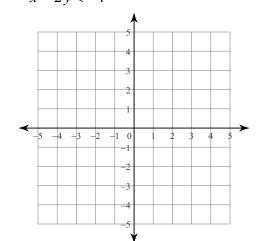

Solve each system of inequalities by graphing!

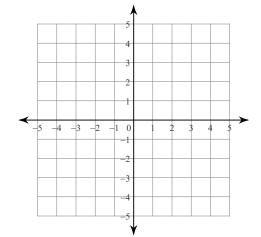
$$1) \quad y \ge -3x - 2$$
$$y < x + 2$$



2)
$$y \ge -\frac{1}{2}x - 2$$


$$y < -\frac{5}{2}x + 2$$


3)
$$y \ge 1$$
 $y \ge x - 1$

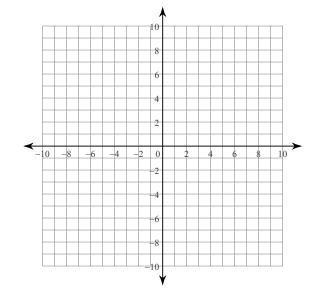

$$4) \quad y \le x - 1 \\ x \le 3$$

5)
$$x - 2y \ge 2$$

 $x - 2y < -4$

6)
$$5x + 3y > -9$$

 $x + 3y \le 3$

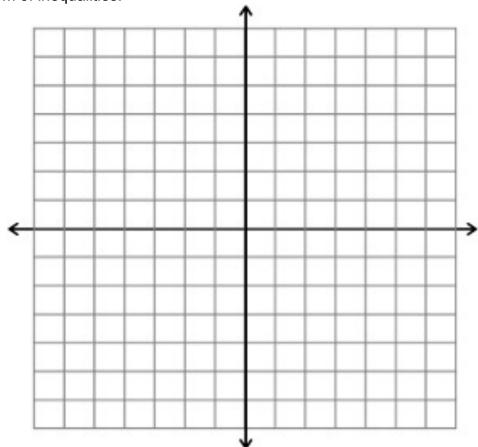

7)
$$y \le -\frac{5}{4}x - 8$$

 $y < \frac{5}{4}x + 2$

$$y < \frac{5}{4}x + 2$$

8)
$$y \le -\frac{8}{7}x + 7$$

$$y \ge -\frac{8}{7}x + 2$$



9) Is (0, 7) a solution to question number 8 above?

Application and Extension

Solve the following system of inequalities. 1.

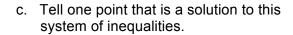
$$y \ge -2$$

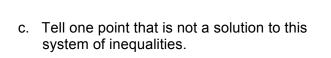
2x + 3y > -6

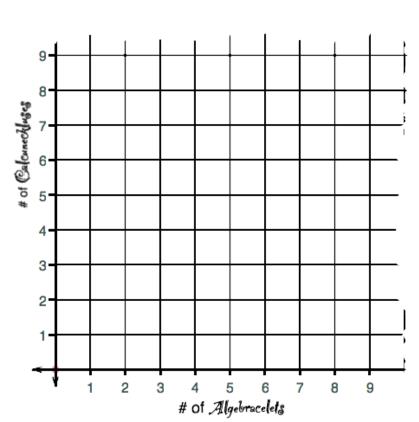
2. Is the point (0, -2) a solution of this system?

6 PACKET 8.5: SOLVING SYSTEMS OF INEQUALITIES

3. ALGEBUSINESS Sully receives a 40 dollar gift certificate for the jewelry shop Prust's Algebling. An Algebracelet costs \$5 while a Calcunecklus costs \$8. Sully wants at least one of each.


Let a = the number of Allgebracelets and c = the number of Calcuneckluses


a. Tell what each of the following inequalities means in the context of this problem:


 $a \ge 1$ $c \ge 1$ $5a + 8c \le 40$

b. Graph all 3 inequalities.

(Hint: Solve $5a + 8C \le 40$ for c by subtracting so from each side and dividing each term by 8. Your inequality is now very similar to y = mx + b!)

Coming	Up: Rewrite	each using	exponents.

3.
$$(xy) \cdot (xy) \cdot (xy) \cdot (xy) =$$

=____

1. (-2, 3); (-2, 11)