REVIEW

$$x = \frac{-b}{2a}$$

NAME:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

DATE:

Find the roots, axis of symmetry, and vertex of the following.

Axis of Symmetry:

X=-

(-1,3)

Vertex:

 $2. \ y = 2x^2 - 3x - 1$

Roots: - 0.29 and 178

Axis of Symmetry:

$$x = \frac{-3}{2(2)} = \frac{3}{4} = 6.75$$
Vertex:

Solve each quadratic using the method given. Express your answer as a decimal. (rounded to hundredth)

GRAPHING

$$0 = -\frac{3}{4}x^2 - 8x - 1$$

4. Using SQUARE ROOTS

$$3m^2 - 5 = 19$$

5. QUADRATIC FORMULA

$$10 = 3p^2 - 5p - 8$$

$$b=-5$$
 $\rho=\frac{5\pm\sqrt{(-5)^2-4(3)(-16)}}{3(3)}$

Solve each quadratic using any method you want. Express your answer in simplest radical form.

6. $4t^2 - 12t - 21 = -9$

 $a=4 + \frac{12^{\frac{1}{2}} (-12)^{\frac{1}{2}} - 4(4)(-12)}{3(4)}$ $b=4 + \frac{12^{\frac{1}{2}} (-12)^{\frac{1}{2}} - 4(4)(-12)}{3(2)}$ $b=4 + \frac{12^{\frac{1}{2}} (-12)^{\frac{1}{2}} - 4(4)(-12)}{3(2)}$

6=-12 (=-12 \(= \frac{12 \dagger{4}}{8} = \frac{12 \dagger{4}\sigma\dagger{1}\dagger{1}\dagge

$$\frac{8}{13 + 421} = \frac{8}{13} + \frac{8}{421} = \frac{3}{3} + \frac{3}{21}$$

7. $2n = 3n^2 + 6n + 12$

$$0 = 3n^2 + 4n + 12$$

C=13 N= - 47 1-13

$$8. \ 8 = \frac{d^2}{3} - 1$$

$$3.9 = \frac{d^2}{3}.3$$

9. Find the zeros of $f(x) = 2x^2 - 3x - 12$

$$(x) = 2x^2 - 3x - 12$$

$$0 = 2x^3 - 3x - 12$$

$$x = -1.81 \text{ and } 3.31$$

I used graphing, but you could use quadratic formula if you like.

APPLICATION

- 10. Mr. Kelly shoots a bottle rocket into the air. The function shows the height of the rocket over time. $s(t) = -16t^2 + 82t + 3$ where t is time in seconds and s is height of the rocket in feet
 - a. Graph with a "friendly" window. Record window here.
 - b. Fill in the table.

III III tile tuole.		
	t	s(t)
	2	201
	5	13
0.5	and 4.675	40
	A	

40 = -164 7-40	-2+82++3 -40
0 =-16t	+827-37
a=-16 +=-	87 = (822-4(-16)(-37)
5=82	2(-16)
<=-31 f=	-87± [4356
	-32

What is the maximum height of the rocket?

maximum height of the rocket? (2.5625, 108.06)

$$Vertex$$
 $\chi = \frac{-b}{2c} = \frac{-92}{2c(c)} = \frac{-92}{-32} = 1.5625$

When will the rocket hit the ground?

$$0 = -16t^{2} + 83t + 3$$

$$a = -16$$

$$b = 83$$

$$t = \frac{-83 \pm \sqrt{83^{3} - 4(-16)(3)}}{2! - 16} = \frac{-83 \pm \sqrt{6916}}{2! - 16} = -0.06$$

$$and (5.16) = -0.06$$

What does s(3) mean? Find it!

Height of the rocket at 3 seconds.

11. The rectangle has a PERIMETER of 140 inches.

a. Write an equation to represent this.

b. Solve for x.

12. The rectangle has an **AREA** of 240 in².

a. Write an equation to represent this.

b. Solve for y.