Solve each system by graphing and sketch the graph.

1)
$$y = 2x - 3$$

 $y = -x + 3$

2)
$$y = -2x + 3$$

 $y = -\frac{1}{3}x - 2$

3)
$$x - y = -2$$

 $x - y = 3$

Solve each system by substitution.

4)
$$-2x + 3y = 14$$

 $y = -5x + 16$

5)
$$y = 3x - 21$$

 $-3x + 10y = 33$

6)
$$4x + y = -22$$

 $-2x - 2y = 2$

Solve each system by elimination.

7)
$$3x - y = -1$$

 $-3x + 3y = 3$

8)
$$x - 4y = -6$$

 $-x + y = 3$

9)
$$6x + 2y = 16$$

 $-8x - 7y = -4$

Solve each system by graphing, substitution, or elimination. If appropriate, write "no solution" or "infinitely many solutions."

10)
$$11x - 3y = -16$$

 $3x + y = 12$

11)
$$2x - 4y = 4$$

 $x - 2y = 12$

12)
$$3x - 12y = -27$$

 $x - 4y = -9$

13)
$$7x + 12y = -17$$

 $x + 4y = 9$

Sketch the solution to each system of inequalities.

14)
$$y \ge -x + 3$$
 $y > 3x - 1$

15)
$$4x - y \ge 3$$

 $y > 1$

16) Is the point (1, 3) a solution of the system of inequalities in number 15?

CA Application and Extension

Use a system of linear inequalities to solve each problem.

y ≥ 0

- 1. Sully has a sandwich bag full of nickels and quarters so he can buy his lunch. He has a total of 29 coins worth \$3.65. How many quarters and how many dimes does Mr. Brust have?
 - a. Complete the following: (2 pts each equation)

_____ + ____ = 29 (Representing the number of coins)

0.05 _____ + 0.25 ___ = \$3.65 (Representing the value of the coins)

- b. Now solve your system to answer the question! (+3 pts)
- 2. The math club had a fundraiser to buy supplies for a hospice. The club spent \$246 buying 12 cases of juice and two cases of bottled water. After deciding they need to purchase some more, they spend \$204 on eight more cases of juice and four more cases of bottled water. Find the cost of a case of juice and a case of water by solving a linear system. (+5)
- 3. A furniture manufacturer produces tables and footstools. Each table requires 10 boards and takes 8 hours to make. Each footstool requires six boards and takes 16 hours to build. The furniture manufacturer has 144 boards in stock and 160 hours available for work.
 - a. Explain each inequality in the context of this problem. (+2 Each)

x = # of tables y = # of foot stools

> SI\$ = M 8I\$ = (

Answers to Corrective Assignment